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Abstract

The response of piezoelectric bodies disturbed by internal electric sources is investigated using integral
representations of Green|s functions and their derivatives[ The emphasis of the article is placed on transient
dynamic phenomena promoted by high intensity electric discharges applied over very short intervals of time[
To that end closed form integral representations of the electro!elastic variables are derived and applied to
investigate the behavior of transversely isotropic piezoelectric ceramics[ In particular\ the characteristics of
the induced stress and electric _eld components are investigated numerically for the case of charge impulses
of triangular shape[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Piezoelectric ceramics are used in modern technologies to convert mechanical energy into
electrical energy and vice versa[ Examples illustrating the use of these materials include multilayer
electromechanical devices\ electronic components\ micromechanical systems and sensors and actu!
ators embedded in intelligent structures[ In these and other applications the mechanical and
electrical reliability of the ceramic as well as the durability of the device or structure are issues of
great concern[ Indeed\ loading conditions of mechanical\ thermal and electrical nature tend to
produce stresses and electric _elds of magnitudes large enough to cause depoling\ dielectric break!
down and even catastrophic failure "Freiman and Pohanka\ 0878#[

During the past ten years there has been a good number of electro!elastic models developed to
describe the behavior of piezoceramics weakened by defects such as cracks and cavities "see e[g[
McMeeking\ 0876^ Pak\ 0889^ Sosa\ 0880\ 0881^ Sosa and Khutoryansky\ 0885^ Suo\ 0882 and
references therein#[ Most of the advances have been based on a generalization of fracture mechanics
concepts to incorporate the e}ects of the electrical variables[ In general\ one can say that the
outcomes from those models have been quite satisfactory] there is a better understanding of how
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electric _elds are perturbed in the presence of defects^ it is now clear that cracks can be stopped if
a voltage is applied in a particular direction^ and there is conclusive theoretical proof that boundary
conditions in~uence the qualitative behavior of _elds int he neighborhood of crack tips[

On the other hand\ little is known on the e}ects that phenomena of impulsive nature have on
the behavior of piezoceramics[ In fact\ devices such as phase change transducers\ pulse generators
for igniters and high voltage transformers are almost routinely subjected to very large voltages
over very short intervals of time[ While these disturbances may dissipate rather quickly\ they can
nevertheless promote failure if the propagating electric and acoustic waves encounter voids\ cracks\
impurities or any other surface of discontinuity!like embedded electrodes[

The present article is a sequel to a previous paper "Khutoryansky and Sosa\ 0884# on the
transient dynamic response of piezoelectric ceramics\ where dynamic fundamental solutions
"Green|s functions# were derived and represented in three di}erent manners to describe the
characteristics of electro!elastic variables[ These three alternative representations are again pre!
sented but rewritten in a more convenient form to address the problem of interest in this article\
namely the case of bodies subjected to electric pulses of arbitrary shape[ In addition\ a thorough
discussion on the representation of fundamental solutions via slowness surfaces is provided[ From
both a theoretical and computational point of view\ the most important aspect of the article is
rendering one!dimensional integral representations for the _eld variables in a rather simple form\
despite the physical complexities of the problems under study[ Thus\ a numerical example is
provided for a particular class of piezoceramic to illustrate the virtues of such a representation[
The results disclose interesting material phenomena\ otherwise di.cult to deduce on physical
grounds or di.cult to reproduce in the laboratory[

1[ Dynamic Green|s functions

Both direct and component notation within the framework of Cartesian coordinates is used
throughout[ Tensors of rank one and above as well as their matrix representations are denoted by
bold face letters[ In the case of component notation we invoke the summation convention over
repeated lower and upper case Latin subindices with the following ranges] i\ j\ k\ = = = � 0\ 1\ 2 and
K\ L\ M\ = = = � 0\ 1\ 2\ 3[

Let B denote the piezoelectric body with boundary 1B\ which is assumed homogeneous and
governed by

Cijkluk\lj¦ekijf\kj¦bi � ru�i

eikluk\li−oikf\ki � q "0#

where ui\ f\ bi\ r and q denote the displacement\ electric potential\ body force per unit of volume\
mass density\ and electric charge density\ respectively[ Moreover\ Cijkl\ eijk and oij are the elastic
"measured at constant electric _eld#\ piezoelectric and dielectric "measured at constant strain#
constants\ respectively\ satisfying the following symmetry relations]

Cijkl � Cijlk � Cjikl � Cklij^ ekij � ekji^ oik � oki

The above system of equations must be solved subject to the following boundary conditions]
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ui � u¹i on 1Bu

sijnij � t¹i on 1Bt

]f^ � 9 on 1Bf

]Di^ni � w¹ s on 1Bw "1#

and the following initial conditions]

ui"x\ 9# � u9
i "x#

u¾i"x\ 9# � v9
i "x# "2#

where sij is the stress\ Di the induction "or electric displacement#\ u¹i\ t¹i and w¹ s are prescribed values
of displacement\ traction and surface charge\ respectively\ ni is the outward unit normal to the
boundary or interior surface of discontinuity and the symbol ]=^ denotes the jump of the enclosed
quantity across the surface[ Lastly\ u9

i "x# and v9
i "x# are prescribed initial values of displacement

and velocity[
As mentioned in the introduction\ we have derived the fundamental solutions for three!dimen!

sional dynamic piezoelectricity by introducing the matrix of Green|s functions U given by

U"x\ t# � B
Uij Ui3

U3j U33 B "3#

with the understanding that Uij and U3j represent the displacement "in the i!direction# and the
electric potential\ respectively\ at a _eld point x � "xi# due to a unit force applied at a source point
j � "ji# in the j!direction[ Likewise\ Ui3 and U33 represent the displacement and electric potential\
respectively\ at x when a point charge is applied at j[

If we introduce the four!dimensional vectors

d � 6
u

f7\ f � 6
b

−q7 "4#

and the di}erential operator

L"9\ 1t# � B
r 11

t 9

9 9 B−B
A a

aT −a B "5#

where A"9#\ a"9# and a"9# are tensors of rank two\ one and zero\ respectively\ with components

Aik � Cijkl

1

1xj

1

1xl

\ ai � ekij

1

1xk

1

1xj

\ a � oik

1

1xi

1

1xk

"6#

then "0# can be written as

L"9\ 1t#d"x\ t# � f"x\ t# "7#

Moreover\ if the loads in the right!hand side of "7# are of the form
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6
b � d"t#d"x−j#ej

q � 9
and 6

b � 9

q � −d"t#d"x−j#
"8#

the governing di}erential equations become

L"9\ 1t#U"x\ t# � d"t#d"x#I "09#

where ej is a unit vector\ d"t# is the Dirac delta!function\ d"x# � d"x0#d"x1#d"x2#\ and I is the 3×3
unit matrix[

There are various ways of solving "09#[ One way is by representing d"x# and U"x\ t# in terms of
integrals over the unit sphere =n= � 0\ in which case the fundamental solutions become

UiM"x\ t# � −
H"t#

3p1

1

1t g=n=�0

s
lk×9

d"Lk# res
l�lk 6

N−0
ij "n\ l#

l−1 7FjM"n# dV"n# "00a#

U3M"x\ t# � −
H"t#

3p1

1

1t g=n=�0

s
lk×9

d"Lk# res
l�lk 6

N−0
ij "n\ l#

l−1 7
FjM"n#ai"n#

a"n#
dV"n#−

d"t#d3M

3pzk"x#

"00b#

where dV"n# is the sphere|s surface element\ and

Lk � t−x =
n

lk

\ k"x# � oc
ikxixk "01#

where lk are the wave speeds of the material and oc
ik are the cofactors of the dielectric tensor oik[

Thus\ "00a# represents the three components of the displacement u when point forces
"M � 0\ 1\ 2# or point charges "M � 3# are applied at the source point\ while "00b# gives the electric
potential response to those same loads[ In "00#

FjM"n# � djM¦
aj

a
d3M

Nij"n\ l# � rl1dij−Bij"n#

Bij"n# � Aij¦
aiaj

a
"02#

and N−0
ij are the components of the inverse of Nij[ Furthermore\ djM is the Kronecker delta[

Generalizing a terminology common in elastodynamics we shall call N"n\ l# the electro!acoustic
tensor for a plane wave propagating in the direction of n with speed l[

2[ Green|s functions representation via slowness surfaces

It turns out that representations like those given by "00# are not convenient from a computational
point of view[ Indeed\ numerical integration of the delta!function is not trivial\ even over a simple
surface like the sphere since there are three wave speeds for every single direction of n[
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An alternate representation stems from a coordinate transformation that maps the unit sphere
into the material|s slowness surface S\ which consists of three smooth and closed sheets S0\ S1 and
S2 "i[e[ S � k2

j�0 Sj# enclosing the origin[ To this end let us consider the slowness vector s such
that\ for each sheet Sj\

s �
n

lj"n#
\ s $ Sj "03#

Furthermore\ by "02# the slowness surface can be expressed as

Q"s# � det N"s\ 0# � 9 "04#

The shapes of the slowness sheets depend on the material properties[ For example\ for crystals
of the class 5 mm and for transversely isotropic piezoceramics "poled in the x2!direction#\ the
sheets are three {concentric| distorted ellipsoids whose traces are shown in Fig[ 0 for three di}erent
ceramics[ In the limit of isotropy the ellipsoids collapse into a single sphere[ It is important to note
that ceramics with slightly di}erent chemical compositions may have quite di}erent slowness
surfaces and therefore\ substantially di}erent electro!acoustic responses[ For example\ in Fig[ 0"a#
we show the three\ clearly convex\ slowness sheets corresponding to a PZT!3 ceramic "Berlincourt
et al[\ 0853#[ In contrast\ a PZT!4 ceramic yields the slowness sheets shown in Fig[ 0"b#\ where it
can be observed that the second sheet S1 has almost vanishing curvature at x2 � 9\ however\ the
whole surface remains convex[ Quite di}erent are the features of the slowness sheets shown in Fig[
0"c#\ which correspond to a TitanateÐLeadÐZirconate ceramic manufactured by Quartz and Silice
"0884# whose second slowness sheet is not convex[ The issue of convexity and how it a}ects the
present formulation is the subject of a separate forthcoming article[ We\ however\ do provide at
the end of this section highlights on how piezoelectric slowness surfaces are represented[

Mapping the Green|s functions onto the slowness surface reduces "00# to

UiM"x\ t# �
H"t#

3p1

1

1t gQ�9

sgn"s = 9Q#Pij"s#FjM"s#d"t−x = s#
=9Q=

dS"s# "05a#

U3M"x\ t# �
H"t#

3p1

1

1t gQ�9

sgn"s = 9Q#ai"s#Pij"s#FjM"s#d"t−x = s#
a"s# =9Q=

dS"s#−
d"t#d3M

3pzk"x#
"05b#

where sign"=# is the signum function and

P"s# � Q"s#N−0"s\ 0# "06#

is the matrix of the cofactors of N"s\ 0#[ Let us point out that while the use of slowness surfaces is
certainly well known in anisotropic elastodynamics to describe physical properties or characteristics
of a material "e[g[ Musgrave\ 0869^ Abbudi and Barnett\ 0880#\ the representation of the pie!
zoelectric Green|s function over such surfaces was introduced for the _rst time by Khutoryansky
and Sosa "0884#[

The propagation of a disturbance in the material can be expressed by the intersection of the
slowness surface S with the plane x = s � t "representing the disturbance#\ which moves in the
direction of x with unit speed[ Such intersection line\ which is shown schematically in Fig[ 0"a#\ is
thus given by
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Fig[ 0[ Slowness sheets for] "a# PZT!3^ "b# PZT!4^ "c# TiPbZi[ Poling direction coincides with the vertical axis[
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l"x\ t# � "Q"s# � 9# K "x = s � t# "07#

It is in terms of integrals over such lines that the dynamic electro!elastic Green|s functions can
be represented with substantial bene_ts as is shown in the next section[

Before closing this section let us elaborate further on the characteristics and the representation
of the slowness surfaces shown in Fig[ 0[ We rewrite the equation for the slowness surface as

Q"s# � Q0"s#Q1"s#Q2"s# "08#

where

Q0"s#Q1"s# � N00"s?\ 0#N22"s?\ 0#−N1
02"s?\ 0# "19a#

Q2"s# � r−A11"s?# "19b#

and

s?0 � zs1
0¦s1

1\ s?1 � 9\ s?2 � s2 "10#

It turns out that one can separate Q0"s# and Q1"s# by using the explicit form of the wave speeds\
which are deduced by combining "02# and "04# yielding

l0\1"n# �
0

zr 6
0
1

ðB00"n?#¦B22"n?#Ł2z0:3ðB00"n?#¦B22"n?#Ł1¦B1
02"n?#7

0:1

"11#

where the components of n? are given by

n?0 � zn1
0¦n1

1\ n?1 � 9\ n?2 � n2 "12#

Next\ to represent each sheet Sj we introduce a spherical coordinate system\ such that

s0 � r sin u cos f\ s1 � r sin u sin f\ s2 � r cos f "13#

where u is the angle between the position vector and the symmetry axes s2[ We note that for every
sheet Sj\ the corresponding radius r is a function of u only\ that is

r � rj"u# �
0

lj"u#
"14#

Moreover\ for the materials under consideration\ the surface S2 "represented by Q2"s# � 9# is an
ellipsoid\ while S0 and S1 remain convex if and only if

d1lj"u#

du1
¦lj × 9^ j � 0\ 1 "15#

The above condition guarantees that for any direction of the observation vector x\ there is only
one value of t for which the plane x = s � t is tangent to Sj[ We denote such value by tj"x# and the
corresponding point on Sj by s�j"x#[ Now\ if 9 ³ t ³ tj\ then the intersection of the plane x = s � t
with the surface Sj is a simple closed curve\ whose parametric representation can be easily obtained
from "14# and "15#[ In particular\ when x1

0¦x1
1 × 9\ this representation is of the form



H[ Sosa\ N[ Khutoryansky : International Journal of Solids and Structures 25 "0888# 4356Ð43734363

r � rj"u#\ f � 2fj"u#\ u�j"x\ t# ¾ u ¾ u�j"x\ t#

while if x1
0¦x1

1 � 9\ the parametric representation becomes

r � rj"u�j#\ −p ¾ f ¾ p

We note that to obtain s�j"x#\ u�j"x\ t# and u�j"x\ t# we need to solve "via simple computational
procedures# eight!order algebraic equations[

3[ The line integral representation

The integrals given by "05# are at this point simpler to be evaluated than "00#[ However\ one
extra degree of simpli_cation can be achieved by a second coordinate transformation\ namely we
decompose the slowness surface element into two directions perpendicular to each other and
tangent to the surface Q"s# � 9\ such that dS"s# � dl"s# dm"s#\ where dl and dm are line elements[
In addition\ noting that

1"x = s#
1m

�
z=x=1 =9Q=1−"x = 9Q#1

=9Q=

where m is the unit vector tangent to the element dm\ the Green|s functions can be represented as
one!dimensional integrals\ namely

UiM"x\ t# �
H"t#

3p1

1

1t gl"x\t#

sgn"s = 9Q#Pij"s#FjM"s#

z=x=1 =9Q=1−"x = 9Q#1
dl"s# "16a#

U3M"x\ t# �
H"t#

3p1

1

1t gl"x\t#

sgn"s = 9Q#ai"s#Pij"s#FjM"s#

a"s#z=x=1 =9Q=1−"x = 9Q#1
dl"s#−

d"t#d3M

3pzk"x#
"16b#

where l"x\ t# is the intersection line given by "07#[
Note that not only the representation of the fundamental solution is e}ected over a line integral\

but also that the delta function has been eliminated altogether from this representation with
obvious bene_ts from a computational point of view[

Since in this article we are interested in sources of electric nature\ let us consider the case when
the subscript M in "16# takes the value M � 3[ Accordingly\ we write]

UiM � Ui3 � ui^ U3M � U33 � f^

FjM � Fj3 � Fj �
aj

a

and "16# becomes

ui"x\ t# �
H"t#

3p1

1

1t gl"x\t#

sgn"s = 9Q#Pij"s#aj"s#

a"s#z=x=1 =9Q=1−"x = 9Q#1
dl"s# "17a#
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f"x\ t# �
H"t#

3p1

1

1t gl"x\t#

sgn"s = 9Q#ai"s#Pij"s#aj"s#

a1"s#z=x=1 =9Q=1−"x = 9Q#1
dl"s#−

d"t#

3pzk"x#
"17b#

We can test the validity of these equations by analyzing its behavior in the limiting case of
isotropic materials[ Under such circumstances\ piezoelectricity is absent "i[e[ aj � 9#\ thus no
deformations are induced and the electric potential reduces to

f"x\ t# �
−d"t#
3po9 =x=

�
−d"t#

3po9"xixi#0:1

as expected according to classical electrostatics[

4[ Electric sources of arbitrary shape

The fundamental solutions U"x\ t# have been obtained by assuming the sources to be delta!
functions in space and time[ Such loads are convenient from a mathematical point of view\ but
hardly can they be considered as representations of physically realistic loading conditions[ Thus\
the next natural step is to derive expressions for the Green|s functions when the sources are of
arbitrary shape[ To this end let the fundamental solutions "05# be expressed in the following
manner]

ULM"x\ t# � H"t#
1

1t gQ�9

RLM"s#d"t−x = s# dS"s# "18#

where RLM"s# has the following component form]

RiM"s# �
sgn"s = 9Q#

3p1 =9Q=
Pij"s#FjM"s# or R3M"s# �

sgn"s = 9Q#

3p1 =9Q=
ai"s#
a"s#

Pij"s#FjM"s#

according to whether displacements or electric potential are being sought[ Notice that for the latter
case\ we omit the second term of "05b# since it bears no impact on the developments presented in
the sequel[

Next\ suppose that the applied impulsive load is of arbitrary shape in time and is represented by
a continuous function 8"t# with _nite piecewise continuous derivative 8¾ "t#[ In such a case\ the
Green|s functions can be represented as the convolution

ULM"x\ t# ( 8"t# � g
�

−�

ULM"x\ t#8"t−t# dt "29#

However\ this convolution can be represented in a more convenient form] substitution of "18#
into the right!hand side of "29# gives

ULM"x\ t# ( 8"t# � gQ�9

RLM"s# g
�

9

8"t−t#d¾ "t−x = s# dt dS"s# "20#

and since
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g
�

9

8"t−t#d¾ "t−x = s# dt � −d"x = s#8"t#¦H"x = s#8¾ "t−x = s#

the convolution "20# becomes

ULM"x\ t# ( 8"t# � −8"t# gQ�9

RLM"s#d"x = s# dS"s#¦ gQ�9

RLM"s#H"x = s#8¾ "t−x = s# dS"s#

"21#

The _rst integral in "21# is the fundamental solution for the corresponding static problem\ which
we shall denote by −US

LM"x#[ Therefore\ we can write

ULM"x\ t# ( 8"t# � 8"t#US
LM"x#¦gQ�9

RLM"s#H"x = s#8¾ "t−x = s# dS"s# "22#

or more explicitly\

UiM"x\ t# ( 8"t# � 8"t#US
iM"x#¦gQ�9

RiM"s#H"x = s#8¾ "t−x = s# dS"s# "23a#

U3M"x\ t# ( 8"t# � 8"t#US
3M"x#¦gQ�9

R3M"s#H"x = s#8¾ "t−x = s# dS"s# "23b#

which is a useful manner of separating quasi!static "given by the product of the function 8"t# and
the static solution# from transient dynamic e}ects[

From the point of view of the design of electromechanical devices\ knowledge of stress and
electric _eld "or induction# levels caused by sudden loads is of utmost importance[ These quantities
can be calculated by means of the constitutive equations once the displacements and electric
potential are known[ For linear piezoelectricity the constitutive equations are given by

sij � Cijkl

1uk

1xl

¦ekij

1f

1xk

Di � eikl

1uk

1xl

−oik

1f

1xk

"24#

which in terms of the derivatives of the fundamental solutions can be expressed as

SijM"x\ t^ 8# � Cijkl

1UkM

1xl

"x\ t# ( 8"t#¦ekij

1U3M

1xk

"s\ t# ( 8"t# "25a#

S3iM"x\ t^ 8# � eikl

1UkM

1xl

"x\ t# ( 8"t#−oik

1U3M

1xk

"s\ t# ( 8"t# "25b#

where the meaning of the variables SKLM "K\ L � i\ 3# should be clear from the de_nitions of the
Green|s functions introduced in "3#[

Straightforward di}erentiation of "22# yields
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1ULM"x\ t#
1xk

( 8"t# � 8"t#
1US

LM"x#
1xk

¦gQ�9

RLM"s#d"x = s#sk8¾ "t−x = s# dS"s#

−gQ�9

RLM"s#H"x = s#sk8� "t−x = s# dS"s#

But

gQ�9

RLM"s#d"x = s#sk8¾ "t−x = s# dS"s# � 8¾ "t# gQ�9

RLM"s#d"x = s#sk dS"s# � 9

because Q � 9 is symmetric with respect to the origin\ RLM"s# � RLM"−s# and d"x = s# � d"−x = s#[
Hence

1UiM"x\ t#
1xk

( 8"t# � 8"t#
1US

iM"x#
1xk

−gQ�9

RiM"s#skH"x = s#8� "t−x = s# dS"s# "26a#

1U3M"x\ t#
1xk

( 8"t# � 8"t#
1US

3M"x#
1xk

−gQ�9

R3M"s#skH"x = s#8� "t−x = s# dS"s# "26b#

where the static derivatives can be written more explicitly as

1US
iM"x#
1xk

� −
xj

7p1 =x=2 gl0"x#

1

1nj

ðnkB
−0
il "n#FlM"n#Ł dl"n# "27a#

1US
3M"x#
1xk

� −
xj

7p1 =x=2 gl0"x#

1

1nj $nkB
−0
il "n#FlM"n#

ai"n#
a"n#% dl"n#¦

d3Moc
kjxj

3pðoc
ikxixkŁ2:1

"27b#

where l0"x# is the intersection of the unit sphere =n= � 0 with the stationary plane x = n � 9[
When the load is electric in nature\ M � 3 and "25# reduce to

sij"x\ t^ 8# � Cijkl

1uk

1xl

"x\ t# ( 8"t#¦ekij

1f

1xk

"s\ t# ( 8"t# "28a#

Di"x\ t^ 8# � eikl

1uk

1xl

"x\ t# ( 8"t#−oik

1f

1xk

"s\ t# ( 8"t# "28b#

where uk\l ( 8"t# and f\k ( 8"t# are obtained from "26# by setting M � 3[

5[ Electric sources of triangular shape

Electric pulses occurring in many practical situations can be represented accurately by triangular
functions which are the {least smooth| continuous functions from a mathematical point of view
and yet very amenable to numerical treatment[ The present section is devoted to such functions[
To this end consider the function 8"t# given by
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Fig[ 1[ Pulse of triangular shape[

8"t# � 89F"t^ t0\ t1# "39#

where 89 is the magnitude of the pulse and

F"t^ t0\ t1# �
t
t0

H"t#−
t1"t−t0#
t0"t1−t0#

H"t−t0#¦
"t−t1#
"t1−t0#

H"t−t1# "30#

where the time parameters t0 and t1 determine the front and rear parts of the pulse shown in
Fig[ 1[

Next we note that on the grid t9 ³t0 ³ = = = ³ tN ³ tN¦0 a continuous piecewise linear function
f"t# can be represented in the interval "t0\ tN# as

f"t# � s
N

k�0

f"tk#F"t^ tk−tk−0\ tk¦0−tk#

To determine stresses and electric _elds "or induction# one needs to calculate the displacement
and electric potential gradients which in turn involve second time derivatives of 8"t#[ Using "30#
we obtain

FÝ"t\ t0\ t1# �
d"t#
t0

−
t1d"t−t0#
t0"t1−t0#

¦
d"t−t1#
t1−t0

"31#

Therefore\ for unit impulses "89 � 0# and after mapping "26# into the line integral we obtain

1ULM"x\ t#
1xk

( F"t^ t0\ t1# � F"t^ t0\ t1#
1US

LM"x#
1xk

−
H"t#
t0 gl"x\t#

ZLMk"x\ s# dl"s#

¦
t1H"t−t0#
t0"t1−t0# gl"x\t−t0#

ZLMk"x\ s# dl"s#−
H"t−t1#
t1−t0 gl"x\t−t1#

ZLMk"x\ s# dl"s# "32#

where
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ZLMk"x\ s# �
=9Q=RLM"s#sk

z=x=1 =9Q=1−"x = 9Q#1
"33#

In particular\ when M � 3 the displacement and electric potential gradients are given by

1ui"x\ t#
1xk

( F"t^ t0\ t1# � F"t^ t0\ t1#
1uS

i "x#
1xk

−
H"t#
t0 gl"x\t#

Zik"x\ s# dl"s#

¦
t1H"t−t0#
t0"t1−t0# gl"x\t−t0#

Zik"x\ s# dl"s#−
H"t−t1#
t1−t0 gl"x\t−t1#

Zik"x\ s# dl"s# "34a#

and

1f"x\ t#
1xk

( F"t^ t0\ t1# � F"t^ t0\ t1#
1fS"x#

1xk

−
H"t#
t0 gl"x\t#

Z3k"x\ s# dl"s#

¦
t1H"t−t0#
t0"t1−t0# gl"x\t−t0#

Z3k"x\ s# dl−
H"t−t1#
t1−t0 gl"x\t−t1#

Z3k"x\ s# dl"s# "34b#

where

Zik �
sgn"s = 9Q#Pij"s#aj"s#sk

a"s#z=x=1 =9Q=1−"x = 9Q#1
"35a#

Z3k �
sgn"s = 9Q#ai"s#Pij"s#aj"s#sk

a1"s#z=x=1 =9Q=1−"x = 9Q#1
"35b#

while the static derivatives are obtained from "27# and are given by

1uS
i "x#

1xk

� −
xj

7p1 =x=2 gl0"x#

1

1nj $nkB
−0
il "n#

al"n#
a"n#% dl"n# "36a#

1fS"x#
1xk

� −
xj

7p1 =x=2 gl0"x#

1

1nj $nkB
−0
il "n#

ai"n#al"n#

a1"n# % dl"n#¦
oc
kjxj

3pðoc
ikxixkŁ2:1

"36b#

Notice that if the material is not piezoelectric but remains anisotropic\ the coe.cients ai vanish[
Therefore\ no strains are induced and the electric _eld components are given by the second term
of "36b# which coincides with the results given\ for example\ by Landau et al[ "0873#[ Moreover\
"36b# clearly indicates that piezoelectricity can a}ect substantially the behavior of an anisotropic
dielectric\ enhancing or reducing ðdepending on the sign of the _rst term in "36b#Ł the magnitude
of the electric _eld generated by point charges[

6[ Numerical results

We consider ceramics of the family PZT!4 "Berlincourt et al[\ 0853# that have been poled in the
x2!direction[ Let the distance between the source of the disturbance and the _eld "or observation#
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point be 09−2 m[ Furthermore\ for purposes of practical application\ pulses of symmetric triangular
shape and of magnitude 09−5 Coulombs are applied ðtherefore\ the expressions given from "32#Ð
"36# must be multiplied by this chargeŁ with durations 1t � 9[4×09−6 s[ Moreover\ if c0"n# is the
maximum speed of propagation of the piezoelectric strain waves in the n direction\ then the wave
length is equal to 1c0t and the corresponding frequency has the value f � 0:1t � 19 MHz[

Since t1 � 1t0 � 1t\ eqn "30# becomes

Ft"t# � F"t^ t# �
0
t

ðtH"t#−1"t−t#H"t−t#¦"t−1t#H"t−1t#Ł "37#

It is of interest to show the behavior of the electro!elastic variables along two mutually per!
pendicular directions\ namely x0 "the same behavior is observed along the x1!axis due to the
material symmetry of the ceramic# and x2[

First we consider the induced electric _eld under time independent conditions[ As we know from
electrostatics\ the electric _eld generated by a point charge has a radial distribution which emanates
from or points towards the charge according to whether the applied charge is positive or negative\
respectively[ Thus along a coordinate axis with unit vector ei the _eld is given by E � Eiei[ If the
material is isotropic the _eld will have the same value "this value being larger in vacuum than in

Fig[ 2[ Electric _eld induced in x0!direction[
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Fig[ 3[ Electric _eld induced in x2!direction[

matter# in any direction at a given point[ When the material is not isotropic this is no longer the
case[ For the piezoceramic under consideration the static values of the _eld at the distance 09−2 m
generated by a positive point charge of 0 mC are computed using "36b#\ which yields E0 � 5[63×095

V:m and E2 � 4[21×095 V:m\ that is E0:E2 � 0[15[ One can go a step further and neglect pie!
zoelectricity altogether\ which is a common practice in simpli_ed analysis[ The present formulation
allows for such approximation by simply setting ai � 9 in "36b#\ in which case the electric _eld
components have magnitudes E0 � 09[20×095 V:m and E2 � 8[71×095 V:m\ thus E0:E2 � 0[94[
That is\ neglecting piezoelectricity not only tends to overestimate the magnitudes of the induced
_elds but also reduces the e}ect of anisotropy[

Next\ we shift our attention to the characteristics of the induced electric _eld when the applied
charge varies in time according to the pulse shown in Fig[ 1[ Using "34b# and "35b# we obtain the
responses shown in Figs 2 and 3[ A few comments are drawn from these _gures[ First\ the maximum
values of the _elds in the x0! and x2!directions are approximately E0 � −2[7×097 V:m and
E2 � −2×096 V:m\ that is E0:E2 � 01[5[ Therefore\ not only the _elds components are much
larger than in the static case\ but also the di}erence in magnitudes in two mutually perpendicular
directions is much more pronounced than under static conditions[ The latter e}ect is a consequence
of the di}erence in radius of curvature of the slowness sheet S1 which is much larger at x2 � 9 than
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Fig[ 4[ Shear stress induced in x0!direction[

Fig[ 5[ Normal stress induced in x2!direction[
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at x0 � 9 "in other words\ the larger the radius of curvature of the slowness sheet the larger the
induced _eld#[ Second\ it is important to bring to the reader|s attention the nature of the various
peaks shown in Figs 2 and 3[ The _rst peaks in both _gures "denoted by Q!S# are manifestations
of the quasi!static solution induced by the purely electrostatic _eld "that is\ without coupling#[
These pulses propagate with in_nite speed and are much smaller in magnitude than the waves
induced by piezoelectricity which travel with _nite speeds[ Finally\ the interpretation of the other
peaks is done with the aid of Figs 0"b# and 1[ In Fig[ 2 we indicate by S0 the very small pulse
corresponding to the _rst slowness sheet at x2 � 9 which occurs at approximately t � 1[7×09−6 s[
Points A?\ B? and C? corresponding to the second sheet S1 "which occurs at approximately
t � 3[3×09−6 s#\ correspond to points A\ B and C of Fig[ 1[ Notice that there is no wave associated
with the third sheet in the x0!direction[ In Fig[ 2 the interpretations are similar\ except that all
three sheets can be observed[ In particular at x0 � 9\ S1 � S2 as can be observed in Fig[ 0"b#[

Because of piezoelectricity\ the applied charge pulse also induces stresses\ which are numerically
calculated using "34#\ "35# and the constitutive eqns "28a#[ The results are shown in Figs 4 and 5
for the x0! and x2!directions\ respectively[ We note that as was the case for the _elds\ signi_cant
induced stresses occur _rst in the poling direction[ Figure 4 indicates that only shear stress s02 is
induced\ which attains a maximum value of approximately 6[0×098 Pa[ On the other hand\ in
the x2!directions all normal stress are induced with peak values s00 � s11 � 9[6×098 Pa and
s22 � 0[7×098 Pa[ All these peak stresses are substantially much larger than the corresponding
tensile and compressive strengths of most industrial piezoceramics\ which are in the order of 79
and 599 MPa\ respectively[ Therefore\ we infer that catastrophic failure could certainly occur even
at lower levels of electric discharges[ The present analysis becomes even more relevant from a
structural integrity point of view in more realistic situations where the ceramic tends to be weakened
by manufacturing induced defects or metallic surfaces[

Finally\ although not shown in this article\ we need to mention that there is a strong dependence
of the electro!elastic variables response on the frequency of the applied electric pulses] in fact\ the
larger the duration of the signal "re~ected in the parameter t# the smaller the peak values attained
by the induced _elds[

7[ Conclusions

The transient dynamic response of piezoelectric ceramics subjected to electric discharges has
been addressed analytically via the use of Green|s functions[ Integral representations of these
functions have been reduced to integral lines which in turn were solved numerically for a particular
case of the time dependent applied electric charge[ The results obtained with the aid of these
representations are shown to reduce to limiting and well!known cases such as isotropic and
anisotropic electrostatics and static piezoelectricity[ Moreover\ important predictions regarding
the electric and mechanical reliability of the ceramic can be made thus avoiding the performance
of controlled laboratory experiments[
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